root/OpenSceneGraph/trunk/include/osg/Vec3f @ 10817

Revision 10817, 6.7 kB (checked in by robert, 4 years ago)

From Chris Hanson, " Adds support for Vec /= Vec and Vec *= Vec operators to Vec2/Vec3/Vec4 double and float
classes."

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
Line 
1/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
2 *
3 * This library is open source and may be redistributed and/or modified under 
4 * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
5 * (at your option) any later version.  The full license is in LICENSE file
6 * included with this distribution, and on the openscenegraph.org website.
7 *
8 * This library is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11 * OpenSceneGraph Public License for more details.
12*/
13
14#ifndef OSG_VEC3F
15#define OSG_VEC3F 1
16
17#include <osg/Vec2f>
18#include <osg/Math>
19
20namespace osg {
21
22/** General purpose float triple for use as vertices, vectors and normals.
23  * Provides general math operations from addition through to cross products.
24  * No support yet added for float * Vec3f - is it necessary?
25  * Need to define a non-member non-friend operator*  etc.
26  * Vec3f * float is okay
27*/
28class Vec3f
29{
30    public:
31
32        /** Type of Vec class.*/
33        typedef float value_type;
34
35        /** Number of vector components. */
36        enum { num_components = 3 };
37       
38        value_type _v[3];
39
40        Vec3f() { _v[0]=0.0f; _v[1]=0.0f; _v[2]=0.0f;}
41        Vec3f(value_type x,value_type y,value_type z) { _v[0]=x; _v[1]=y; _v[2]=z; }
42        Vec3f(const Vec2f& v2,value_type zz)
43        {
44            _v[0] = v2[0];
45            _v[1] = v2[1];
46            _v[2] = zz;
47        }
48
49
50        inline bool operator == (const Vec3f& v) const { return _v[0]==v._v[0] && _v[1]==v._v[1] && _v[2]==v._v[2]; }
51       
52        inline bool operator != (const Vec3f& v) const { return _v[0]!=v._v[0] || _v[1]!=v._v[1] || _v[2]!=v._v[2]; }
53
54        inline bool operator <  (const Vec3f& v) const
55        {
56            if (_v[0]<v._v[0]) return true;
57            else if (_v[0]>v._v[0]) return false;
58            else if (_v[1]<v._v[1]) return true;
59            else if (_v[1]>v._v[1]) return false;
60            else return (_v[2]<v._v[2]);
61        }
62
63        inline value_type* ptr() { return _v; }
64        inline const value_type* ptr() const { return _v; }
65
66        inline void set( value_type x, value_type y, value_type z)
67        {
68            _v[0]=x; _v[1]=y; _v[2]=z;
69        }
70
71        inline void set( const Vec3f& rhs)
72        {
73            _v[0]=rhs._v[0]; _v[1]=rhs._v[1]; _v[2]=rhs._v[2];
74        }
75
76        inline value_type& operator [] (int i) { return _v[i]; }
77        inline value_type operator [] (int i) const { return _v[i]; }
78
79        inline value_type& x() { return _v[0]; }
80        inline value_type& y() { return _v[1]; }
81        inline value_type& z() { return _v[2]; }
82
83        inline value_type x() const { return _v[0]; }
84        inline value_type y() const { return _v[1]; }
85        inline value_type z() const { return _v[2]; }
86
87        inline bool valid() const { return !isNaN(); }
88        inline bool isNaN() const { return osg::isNaN(_v[0]) || osg::isNaN(_v[1]) || osg::isNaN(_v[2]); }
89
90        /** Dot product. */
91        inline value_type operator * (const Vec3f& rhs) const
92        {
93            return _v[0]*rhs._v[0]+_v[1]*rhs._v[1]+_v[2]*rhs._v[2];
94        }
95
96        /** Cross product. */
97        inline const Vec3f operator ^ (const Vec3f& rhs) const
98        {
99            return Vec3f(_v[1]*rhs._v[2]-_v[2]*rhs._v[1],
100                         _v[2]*rhs._v[0]-_v[0]*rhs._v[2] ,
101                         _v[0]*rhs._v[1]-_v[1]*rhs._v[0]);
102        }
103
104        /** Multiply by scalar. */
105        inline const Vec3f operator * (value_type rhs) const
106        {
107            return Vec3f(_v[0]*rhs, _v[1]*rhs, _v[2]*rhs);
108        }
109
110        /** Unary multiply by scalar. */
111        inline Vec3f& operator *= (value_type rhs)
112        {
113            _v[0]*=rhs;
114            _v[1]*=rhs;
115            _v[2]*=rhs;
116            return *this;
117        }
118
119        /** Unary multiply by vector. */
120        inline Vec3f& operator *= (const Vec3f& rhs)
121        {
122            _v[0]*=rhs[0];
123            _v[1]*=rhs[1];
124            _v[2]*=rhs[2];
125            return *this;
126        }
127
128        /** Divide by scalar. */
129        inline const Vec3f operator / (value_type rhs) const
130        {
131            return Vec3f(_v[0]/rhs, _v[1]/rhs, _v[2]/rhs);
132        }
133
134        /** Unary divide by scalar. */
135        inline Vec3f& operator /= (value_type rhs)
136        {
137            _v[0]/=rhs;
138            _v[1]/=rhs;
139            _v[2]/=rhs;
140            return *this;
141        }
142
143        /** Unary divide by vector. */
144        inline Vec3f& operator /= (const Vec3f& rhs)
145        {
146            _v[0]/=rhs[0];
147            _v[1]/=rhs[1];
148            _v[2]/=rhs[2];
149            return *this;
150        }
151
152        /** Binary vector add. */
153        inline const Vec3f operator + (const Vec3f& rhs) const
154        {
155            return Vec3f(_v[0]+rhs._v[0], _v[1]+rhs._v[1], _v[2]+rhs._v[2]);
156        }
157
158        /** Unary vector add. Slightly more efficient because no temporary
159          * intermediate object.
160        */
161        inline Vec3f& operator += (const Vec3f& rhs)
162        {
163            _v[0] += rhs._v[0];
164            _v[1] += rhs._v[1];
165            _v[2] += rhs._v[2];
166            return *this;
167        }
168
169        /** Binary vector subtract. */
170        inline const Vec3f operator - (const Vec3f& rhs) const
171        {
172            return Vec3f(_v[0]-rhs._v[0], _v[1]-rhs._v[1], _v[2]-rhs._v[2]);
173        }
174
175        /** Unary vector subtract. */
176        inline Vec3f& operator -= (const Vec3f& rhs)
177        {
178            _v[0]-=rhs._v[0];
179            _v[1]-=rhs._v[1];
180            _v[2]-=rhs._v[2];
181            return *this;
182        }
183
184        /** Negation operator. Returns the negative of the Vec3f. */
185        inline const Vec3f operator - () const
186        {
187            return Vec3f (-_v[0], -_v[1], -_v[2]);
188        }
189
190        /** Length of the vector = sqrt( vec . vec ) */
191        inline value_type length() const
192        {
193            return sqrtf( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
194        }
195
196        /** Length squared of the vector = vec . vec */
197        inline value_type length2() const
198        {
199            return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2];
200        }
201
202        /** Normalize the vector so that it has length unity.
203          * Returns the previous length of the vector.
204        */
205        inline value_type normalize()
206        {
207            value_type norm = Vec3f::length();
208            if (norm>0.0)
209            {
210                value_type inv = 1.0f/norm;
211                _v[0] *= inv;
212                _v[1] *= inv;
213                _v[2] *= inv;
214            }               
215            return( norm );
216        }
217
218};    // end of class Vec3f
219
220
221const Vec3f X_AXIS(1.0,0.0,0.0);
222const Vec3f Y_AXIS(0.0,1.0,0.0);
223const Vec3f Z_AXIS(0.0,0.0,1.0);
224
225}    // end of namespace osg
226
227#endif
228
Note: See TracBrowser for help on using the browser.